¹¹³Cd MAS and Static NMR Study of Chlorocadmate Glasses

Shinichi Sakida,* Hironobu Nakata,[†] and Yoji Kawamoto[†]
Venture Business Laboratory, Okayama University, 3-1-1 Tsushima-Naka, Okayama 700-8530
[†]Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe 657-8501

(Received April 21, 2003; CL-030337)

¹¹³Cd magic-angle spinning (MAS) and static NMR spectra were measured of fourteen kinds of chlorocadmate glasses to reveal the chlorine coordination environments around Cd²⁺ in the glasses in detail. The spectra of the glasses suggest that the glass structures are mainly composed of infinite double-chains of edge-shared CdCl₆ octahedra, being independent of the CdCl₂ content and the kinds of chlorides except for CdCl₂. ¹¹³Cd MAS and static NMR spectroscopies enabled us to reveal not only chlorine coordination number of Cd but also linkage manners between CdCl₆ octahedra in the glasses.

The structures of CdCl₂-based glasses have been investigated by means of Raman¹ and EXAFS² spectroscopies by Kadono et al. They have concluded that the chlorine coordination number of Cd²⁺ in these glasses is mainly five and six, ¹ being close to six. ² However, the more detailed information about the structures of CdCl₂-based glasses has not been obtained yet.

In the present study, ^{113}Cd MAS and static NMR spectra of chlorocadmate glasses are measured to reveal the chlorine coordination environments around Cd^{2+} in the glasses in detail. The chlorine coordination environments around Cd^{2+} in the glasses are discussed based on the relationship between NMR parameters such as isotropic chemical shift $\delta_{\rm iso}$, chemical shift anisotropy $\Delta\delta$ and asymmetry parameter η and the chlorine coordination environments around Cd^{2+} , which has been found in the ^{113}Cd MAS and static NMR study of chlorocadmate crystals. 3

Chlorocadmate glasses of different compositions given in Table 1 were prepared. These glasses contained 0.7 mol% NiCl₂ in order to shorten the relaxation time of a Cd nucleus. Five-

gram batches of well-mixed reagents were melted at 600–650 °C for 15 min in silica crucibles in a glove box filled with a dry Ar gas. Then the melts were quickly quenched by pressing them between a pair of brass plates in the glove box.

¹¹³Cd MAS and static NMR spectra of powdered glasses were obtained at 88.738 MHz (9.4 T) with a Varian UNITY IN-OVA 400 MAS FT-NMR spectrometer. The acquisition parameters were a 4.0 μs pulse length, 1600–6400 scans and a 1.0–2.0 s pulse delays. Spinning rates were 5–6 kHz. Chemical shifts were referenced to a 1 M Cd(ClO₄)₂ aqueous solution at 0 ppm.

The principal components of the chemical shift tensors, δ_1 , δ_2 and δ_3 can be estimated by fitting the theoretically calculated NMR spectra to the experimental NMR spectra. The detailed procedure has been described elsewhere. The isotropic chemical shifts obtained from static NMR spectra ($\delta_{\text{iso(static)}}$), $\Delta\delta$, and η can be also determined according to the following definitions: 5,6

$$\delta_{\text{iso(static)}} = (\delta_1 + \delta_2 + \delta_3)/3 \tag{1}$$

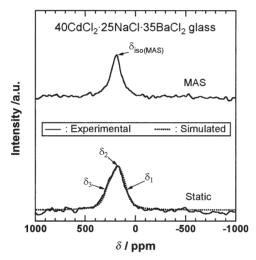
$$\Delta \delta = \delta_3 - \left[(\delta_1 + \delta_2)/2 \right] \tag{2}$$

$$\eta = (\delta_2 - \delta_1)/(\delta_3 - \delta_{\text{iso(static)}}) \tag{3}$$

The δ_1 , δ_2 , and δ_3 values can be determined based on Eq 4:

$$|\delta_3 - \delta_{\text{iso(static)}}| \ge |\delta_1 - \delta_{\text{iso(static)}}| \ge |\delta_2 - \delta_{\text{iso(static)}}|$$
 (4)

The absolute value of $\Delta\delta$ ($|\Delta\delta|$) reflects the degree of symmetry around a Cd atom, that is, symmetry around a Cd atom decreases with an increase of the $|\Delta\delta|$. The η reflects the degree of axial symmetry around a Cd atom; $\eta=0$ for an axial symmetry around a Cd atom and $\eta=1$ for an axial asymmetry.


Table 1. Isotropic chemical shifts ($\delta_{iso(MAS)}$ and $\delta_{iso(static)}$) determined by ¹¹³Cd MAS and static NMR at 9.4 T, respectively, and chemical shift tensors (δ_1 , δ_2 , and δ_3), chemical shift anisotropy ($\Delta\delta$), and asymmetry parameter (η), determined by ¹¹³Cd static NMR

Glass composition	$\delta_{ m iso(MAS)}$	$\delta_{ m iso(static)}$	δ_1	δ_2	δ_3	$\Delta\delta$	η
40CdCl ₂ ·15NaCl·45BaCl ₂	199	199	88	191	319	180	0.86
40CdCl ₂ ·20NaCl·40BaCl ₂	199	198	83	186	325	191	0.81
40CdCl ₂ ·25NaCl·35BaCl ₂	185	188	92	174	297	164	0.75
45CdCl ₂ ·20NaCl·35BaCl ₂	200	201	325	216	63	-208	0.79
45CdCl ₂ ·20KCl·35BaCl ₂	205	205	95	196	325	180	0.84
45CdCl ₂ ·10NaCl·10KCl·35BaCl ₂	199	200	98	191	312	168	0.82
$45CdCl_2 \cdot 20KCl \cdot 10SrCl_2 \cdot 25BaCl_2$	199	199	86	184	328	193	0.76
50CdCl ₂ ·15NaCl·35BaCl ₂	198	197	300	210	80	-175	0.77
50CdCl ₂ ·10KCl·40BaCl ₂	204	205	112	184	320	172	0.63
50CdCl ₂ ·15KCl·35BaCl ₂	202	203	107	187	315	168	0.71
50CdCl ₂ ·20KCl·30BaCl ₂	204	204	97	187	328	186	0.73
50CdCl ₂ ·10KCl·5CsCl·35BaCl ₂	193	194	318	210	55	-209	0.78
55CdCl ₂ ·15KCl·30BaCl ₂	203	203	85	192	333	195	0.82
55CdCl ₂ ·20KCl·25BaCl ₂	201	202	92	185	330	192	0.73

All the values except for η have a unit of ppm. Experimental errors in $\delta_{iso(MAS)}$ were within ± 1 ppm. Experimental errors in $\delta_{iso(static)}$, δ_1 , δ_2 , and δ_3 were within ± 5 ppm.

Figure 1 shows the ¹¹³Cd MAS and experimental and simulated static NMR spectra of 40CdCl₂·25NaCl·35BaCl₂ glass as an example. The peak of MAS spectrum in the figure corresponds to the isotropic chemical shift obtained from MAS spectrum ($\delta_{iso(MAS)}$). The static spectrum is broader than the MAS spectrum. The simulated spectrum of 40CdCl₂·25NaCl·35BaCl₂ glass satisfactorily reproduced the experimental spectra, supporting the validity of the calculated values of δ_1 , δ_2 , and δ_3 . Thus, the δ_1 , δ_2 , and δ_3 values of all the glasses were estimated by fitting the simulated theoretical spectra to the experimental static spectra. Taking into account the very small difference between $\delta_{iso(MAS)}$ and $\delta_{iso(static)}$ (3 ppm at most), the values of δ_1 , δ_2 , and δ_3 obtained for all the glasses are presumed to be accurate. The determined δ_1 , δ_2 , and δ_3 values are summarized in Table 1. The $\delta_{iso(static)}$, $\Delta\delta$ and η values which were calculated from the δ_1 , δ_2 , and δ_3 values by using Eqs 1–3 are also listed in Table 1.

The $\delta_{iso(MAS)}$ values of the chlorocadmate glasses are plotted in Figure 2. These values are located in the $\delta_{iso(MAS)}$ range corresponding to linked CdCl₆ octahedra. This indicates that these glasses are comprised of linked CdCl₆ octahedra, that is, that Cd²⁺ in the glasses acts as a glass-forming cation.

Figure 1. ¹¹³Cd MAS and experimental and simulated static NMR spectra of 40CdCl₂·25NaCl·35BaCl₂ glass.

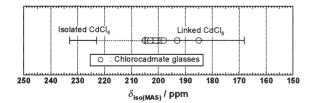
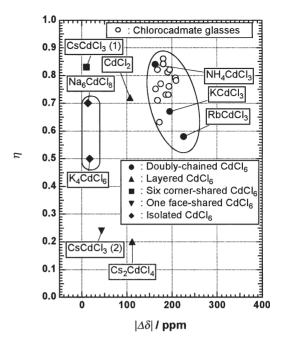



Figure 2. $\delta_{iso(MAS)}$ values of chlorocadmate glasses.

Figure 3. η – $|\Delta\delta|$ plot determined by ¹¹³Cd static NMR of chlorocadmate glasses.

The $|\Delta\delta|$ and η values of the chlorocadmate glasses are plotted in Figure 3. The $|\Delta\delta|$ and η values are located in the region of doubly-chained CdCl₆ which means infinite double-chains of edge-shared CdCl₆ octahedra.³ This result suggests that these glasses are mainly composed of infinite double-chains of edge-shared CdCl₆ octahedra and that the chlorine coordination environments around Cd²⁺ in the glasses are independent of the CdCl₂ content and the kinds of chlorides except for CdCl₂.

In the chlorocadmate glasses, ¹¹³Cd MAS and static NMR spectroscopies enabled us to reveal not only chlorine coordination number of Cd but also linkage manners between CdCl₆ octahedra.

References

- 1 K. Kadono, T. Shimomura, and H. Tanaka, *Phys. Chem. Glasses*, **32**, 29 (1991).
- K. Kadono, N. Kamijo, and H. Tanaka, *Phys. Chem. Glasses*, 38, 232 (1997).
- S. Sakida and Y. Kawamoto, J. Phys. Chem. Solids, 63, 151 (2002).
- 4 S. Hayakawa, T. Yoko, and S. Sakka, Bull. Chem. Soc. Jpn., 66, 3393 (1993).
- 5 K. A. Smith, R. J. Kirkpatrick, E. Oldfield, and D. M. Henderson, Am. Mineral., 68, 1206 (1983).
- S. Hayashi and K. Hayamizu, *Bull. Chem. Soc. Jpn.*, **63**, 961 (1990).